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QUADRATIC DIOPHANTINE EQUATIONS

By G. L. WATSON
University College London

(Communicated by H. Davenport, F.R.S .—Received 5 April 1960)
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Tartakowsky (1929) proved that a positive definite quadratic form, with integral coeflicients, in 5
or more variables represents all but at most finitely many of the positive integers not excluded by
congruence considerations. Tartakowsky’s argument does not lead to any estimate for a positive
integer which, though not so excluded, is not represented by the quadratic form. Here estimates for
such an integer are obtained, in terms of the coefficients of the quadratic form. To simplify the
argument and improve the estimates, the problem is slightly generalized (by considering a Dio-
phantine equation with linear terms). A combination of analytical and arithmetical methods is
needed.
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1. INTRODUCTION

Let f = f(%y, ..., x,) be a positive definite quadratic form with integral coefficients, and N a
positive integer. Suppose that f does not represent N (that is, that the Diophantine equa-
tion = N is insoluble in integers), although the congruence f= N (mod m) is soluble to
every modulus. Then Tartakowsky (1929) showed that for given f with n> 5 there are at
most finitely many possibilities for N. It is clear from Tartakowsky’s argument that his
result remains valid if the problem is generalized by introducing linear terms into the
Diophantine equation. I find that this generalization makes it much easier to sharpen
Tartakowsky’s result by estimating N in terms of the coefficients of f. Such estimates are

Y B \

—
;ﬂ — given in:
8 : TueorREM 1. Let f= f(xy,...,%,) be a positive definite quadratic form with integral coefficients in
- 5 n = 5 variables, and denote its discriminant by d(== 0). Let by, ..., b,, N be integers, N positive, such
E 8 that the equation NG A RN A —I—h,&, - N (1)
has no solution in integers x;, although the congruence
Sy ooox,) +byx+ ... +b,x, = N (modm) (2)

has for every positive integer m a solution in integers x, depending on m. Then we have the estimates
(with implied constants depending only on n)

N<ld], if n=10, (3)
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228 G. L. WATSON ON
N< |d|5/(n—4)+(l/n)’ ?f 5<n<9, (4)
N<l|dl, if n=6 and [ 1isdiagonal. (5)

In the diagonal case, denote the diagonal coefficients of f by ay, ..., a,, and let ¢ be an arbitrary
positive number; then we have
N < aja,a5a4(a+ ... +a,)'"e, (6)
with an implied constant depending only on n, .
It is of interest in itself, and necessary for the proof of theorem 1, to simplify the congru-
ence condition, replacing the variable modulus m by a fixed modulus (depending only on f).
We shall prove:

THEOREM 2. Let [ = f(%,...,%,),n > 4, be a non-singular quadratic form with integral co-
efficients and discriminant d(== 0). Then there exists a positive integer my = my( f), depending only
on f, with the following properties. The congruence (2) is soluble in integers x;, for every positive integer m,
whenever by, ... b,, N are integers such that the congruence is soluble with m = m,. Further, if d' is the
product of the distinct prime factors of d, then m3~3d" divides d.

It is only in the last part of theorem 2 that the precise definition of the discriminant
d = d(f) (which will be given later) is important.

Theorem 1 cannot be substantially improved. The condition 7 > 5 is necessary even for
Tartakowsky’s result (see Ross & Pall 1946), unless a stronger congruence condition is
imposed ; but even with such a condition I have not been able to estimate N in case n = 4.
I have discussed the case n = 8, b, = b, = b; = 0 of (1) elsewhere (Watson 1960) ; any ana-
logue of theorem 1 for » = 3 would have to have rather subtle hypotheses. The equation

2(x24 ... 4+x2_ )+ (N+2)x2= N, n =5, (7)

is obviously insoluble for large odd N, yet it satisfies all the hypotheses of theorem 1 and has
N> |d|.
In theorem 2 we need the condition » > 4, as may be seen by considering the congruence

x}+x%+x% = — 4" (mod m),

with arbitrarily large #; this is soluble with m = 4-4* but not with m = 8-4%. For n > 4 the
last part of theorem 2 gives us

mp~3 < |d|. (8)
By considering congruences of the shape ‘
S =x}+x% 4234849 (x,, ..., x,) = —4" (mod m), (9)

we see that (8) is best possible of its kind. For (9) is soluble with m = 4-4% but not with
m = 8-4%; and we can choose d(¢) < 1, giving d(f) < 473" < m2-3,

An outline of the argument may help the reader. We begin by tackling the diagonal case
of (1) analytically, by the Hardy-Littlewood method, with the simplifications introduced
by Vinogradov. These incidentally seem to be important; I can neither use them for n = 4
nor obtain any estimate for N without them. We seek an asymptotic formula for the
number of solutions of (1) in the diagonal case. Ultimately we obtain an estimate for the
error of this formula good enough to show that if there is no solution (6) must hold. From
the nature of the method, the same conclusion would follow with the weaker hypothesis
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QUADRATIC DIOPHANTINE EQUATIONS 229

that the actual number of solutions does not lie between 1 4-¢ times the analytical approxi-
mation. Unfortunately the analysis does not directly give what is sought until we introduce
an additional congruence condition, which implies that the sum of the singular series is not
too small. Fortunately this additional hypothesis is not needed till the main analytical
difficulty has been overcome.

Now we use elementary arithmetical arguments. These show (i) that the additional con-
dition just mentioned can be dropped, (ii) that theorem 2 is true, and (iii) that (3), (4),
(5) all follow from the case n = 5 of (6).

2. PRELIMINARY ANALYSIS

The diagonal case of the equation (1) of §1 is

T

(a2+bx) = N, ()

i
where n > 5 and the g, are positive integers. Without loss of generality we assume
o] <a; (1=1,...,n). (2)
For if not, transform (1) by putting x;+¢ for x;, with integers ¢; so chosen that
|6i] = [2a;¢;+b,| < a;.

This substitution takes (1) into an equation of the same shape, with the same g; and with
b;, N', N’ > N, for b;, N, whence (6) of §1 must be true for (1) ifit is true for the transformed

equation.
Using the usual abbreviation e(d) for exp (27if), 6 real, we define exponential sums
Si(x) = Ze (axfa+b;xa), (3)
@
the summation conditions being 0 < g;4?+bx; < N (4)

(implied by (1), (2)). Clearly the number
r(N) =r(ay,...,a,5 by, ..., 0,5 N)

of solutions of (1) (not at present assumed insoluble) is given by
1
r(V) = [ $,(a) .. 8,(a) e( ~ N da. 5)
0

There is clearly no serious loss of generality in assuming

N> m?'x ;s (6)

which with (2), (8), (4) gives the trivial estimate
Si(a) < aytNY. (7)
It is well known that for real a, P, with P > 1, there exist coprime integers £, ¢, ¢ positive,
such that ¢ < P and |¢—#/q| < P~1¢~'. From the nature of our problem we cannot begin
by working with such rational approximations to o, but must instead use similar approxima-
tions to the numbers ¢,a (with a;*N? for P). These approximations, /;/g;, will be chosen to
satisfy 0< g <artNY,  (hyg) =1, (8)

28-2
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230 G. L. WATSON ON
with the usual notation for a greatest common divisor, and

TR (9)
where B = a;o—hifg;.

We purposely make these inequalities less precise than they could be, so that later we may
have, in some cases, more than one choice of ¢;. It will be convenient however to impose the
obvious restriction 1 1

BETAATE

so that the choice of ¢; determines uniquely that of /;. It is well known that results such as
the following do not depend on the implied constants in (8), (9).

LemmaA 2-1. When (8), (9) hold we have

(10)

Si(a) < ayiNYregt (11)

Sila) < Negr |G, if Bt O, (12)

and f |S;()|*da < a;2N1teg;2, (13)
®,©

where the range of integration is the interval on which (8), (9) hold for any one pair h,, q;.

Proof. See, for example, Watson (1953) (formulae (7-1), (7-2)) for (11), (12), from which
(13) follows.

Formulae (11), (12) can be combined as

|S;(2) |* < a;72N?+eg;2min (1, a?N-%4;2), (14)
where min (1, 071!) is to be interpreted as 1 in case f; = 0. By multiplying (11), (12) together
we find S|t < @ Nvegr2lg L, i+ 0. (1)

Summing over /%;, ¢; in (13), or otherwise, we find
1
| 15(a)[*da < ap N1 (16)

(which is well known). (Note in (13), (16) that da = a;1df..)

In all these estimates we may interpret the symbol < asindicated in theorem 1. That is,
the implied constant depends at most on 7, ¢, but not on ¢ (an arbitrary positive number)
unless ¢ occurs explicitly in the formula. We adhere to this convention throughout; whether
or not the constant need depend on 7 is never material.

It will be convenient to note here that §;(1 —«) is the complex conjugate of S;(«), and that
(10) gives us &, &= 0 for @ > 3 -

3. EXCLUSION OF MINOR ARCS

(a) I usethe expression minor arcs, loosely, to denote a set of sub-intervals of the range of
integration in (5) of §2, in which it is not advisable to replace the sums S;(«) by convenient
approximations; one has therefore to prove that the integral over this set is negligible.
A natural choice of the set of minor arcs is to take it to be the set of a, in (0, 1), on which the
rational numbers 4,/a;q; (see (8), (9) of §2) are not all equal. The first effective treatment of a
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QUADRATIC DIOPHANTINE EQUATIONS 231

situation of this nature was made by Birch & Davenport (1958). Their method was very
laborious; the following crucial lemma is based on an unpublished simplification of their
argument, due to Miss J. Pitman.

LEmMA 3-1. Let G denote the part of the interval (0, 1) on which, in the notation of §2,

oy ko
419, 429>
Then we have f 1S, (@) Sy(e)|*do < a7 laz I NZ+e,
¢
Proof. Let H denote the part of the interval (0, 1) on which
Aot gig =018 and a1 (1)

b
a9 G429,

From symmetry, and by the remark at the end of § 2, it will suffice to prove

f 15(e) 5(e) | du <yt N2, 2)

For « in H, we define an integer ¢ = ¢(a) by
ashyqy—a by q; = (ay,a,) t. (3)
From (1) we have ¢ < 0. By (9) of §2, the left member of (3) is a,a,¢,¢5(a5'fy—ai'f,),
whence by (1) we find 0 < (ay, a5) |t] < 439,45 151] < N, (4)

using also (6), (8) and (9) of §2.
Now there exist integers 7, s such that

ays—ayr = (ay,85)t, 0<s5<(ayay)'ay. (5)

From (3), (5) itis clear that there exists an integer  with

hqy = s+(ay, a5) " ayu,  hyqy = 1+ (ay, a5) layu. (6)
From these formulae and (6), (8) of §2, using also the obvious %, < 4, ¢;, we find
u < (ay,a5) ¢1g2 < N. (7)
From (1), using the remark at the end of §2, and (8) of §2, we have
hihyq1 4y =+ O. (8)

Suppose now that ¢, u are given. Then the second of the formulae (5), with the congruence
modulo (a,, a,)~'a, derivable from the first, determines s uniquely, whence clearly  too is
uniquely determined. The right member of each of the formulae (6) is easily seen to be
< N?,s0 by (6), (8) there are < N¢ possibilities for 4y, /,, q,, ¢,. It follows that when ¢, u are
given, a is restricted to lie in the union of a set of < N¢intervals of the shape defined in (9)
of §2, with ¢ = 2.

For o in any one of these intervals, take 7 = 2, 1 in (14), (15) of §2, and then use (4)
(7); we find

b

181(2) Sy(e)|* < a7t N1 g2, ~'a3? N*+oq5? min (1, a3 N-24;?)
< a7 az N[ (Ju] + 1)V min (1, 3 N-2657).
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232 G. L. WATSON ON

Recalling that da = a3;'df,, we see that the contribution from the interval to the left
member of (2) is < aplaz! N2+t =1(|u| 4-1)"L,

We multiply by the estimate N¢ for the number of intervals corresponding to a given pair
t, u, and thensum over 0 < |t| < N, u < N (see (4), (7)). This gives us that the left member
of (2) is < a7laz ! N2+3% (log N)? < aylaz! N2+,

Here as ¢ is arbitrary we may put 1¢ for ¢; then we have (2) and the lemma follows. We
deduce:

LemMA 3-2. Let J denote the part of the interval (0, 1) on which, in the notation of §2, the numbers
h;/a;q; are not all equal. Then we have

fJ!Sl(“) Sn(“) |do < A-bNIte(a, aya50,)t (a5+ .. 4,3,

Jfor arbitrary postitive ¢, where for brevity A is written for the product a, ... a,.

Proof. We use the estimate of lemma 3-1, together with three estimates obtained from
(16) of §2 by putting 3, 4, 5 for ¢, and G for (0, 1). Applying Schwarz’s inequality, we deduce
from these four estimates that

f 18:(@) . S5(e)| d < (@ apaga,05) 2N
Now this estimate may be written as
f 181(a) o S5(a) | du < AENE(a - ag) gy . a),

and from symmetry it remains valid if G is taken to be the part of the interval (0, 1) on
which the five rational numbers %,/a,q;, ¢ = 1, ..., 5, are not all equal.
Using for > 6 the trivial estimate (7) of §2, we deduce

f 18,(a) ... S,(a) | do < A-ENF-E+¢(a, g, a0, a5)t.

This estimate is valid over the set just mentioned ; but if we put a;+ ... -+, for a;, it becomes
permissible to permute the suffixes 5, ... 7. The lemma follows.

(b) Theset (0, 1) —J, with J asin lemma 3-2, is the union of a finite number of intervals.
It is important that these should, except for two with end points 0, 1, have the shape
le—h/q| < By, with ¢ a positive integer, £ an integer prime to ¢, and f, independent of 4 (but
depending on the g;, N and ¢). To see that this is possible, it is convenient to prove a more
precise form of the result on Diophantine approximation used in §2.

LeEMMA 3-3. Let P, « be given real numbers, P> 1. Let q denote a positive integer, h an integer

prime to q. Then h, g may be chosen:
(¢) in at least one way, to satisfy

g<P, a~§1<P”q“; (9)
(i7) either to satisfy qg<P, a—g < P 1g7Y, (10)
or in at least two ways to satisfy g < 2P, !oc~ gl < P lg. (11)

Further, there is always at most one choice satisfying (10).
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Proof. We express « as a continued fraction, and denote by /'/¢" the last convergent whose
denominator does not exceed P. (This may mean 4'/q¢’ = « if a is rational.) Except in the
casea = A'/q’, in which case , ¢ = k', ¢’ clearly satisfies (10), let 2”/q” be the next convergent
to the continued fraction; this gives ¢ > P. We have |4'¢" —-4"¢'| = 1.

Now « lies between the two successive convergents, so |a—4"/¢’| < 1/¢'q". Hence (9) is
always satisfied by the choice %,¢q = /', ¢'; and if this choice fails to satisfy (10), then
clearly ¢” < 2P, while the second of the inequalities (11), with &, q = £”,¢”, is implied by
le—£A"]q"| < ¢"~% (a well-known property of continued fractions) and ¢” > P.

For the last assertion let 4, ¢ = #',¢"; 1", ¢" be two solutions of (10). (10) and P > 1 show
that ¢’ = ¢” is impossible; so suppose ¢' < ¢” < P. Then
R L g 1
¢ "4 ¢ 2P¢'q" " 4'¢"

gives a contradiction. This completes the proof of the lemma and we deduce:

1

<P Y

LEmMA 3-4. With a suitable convention in the choice of the rational approximations h;/q; to the real

numbers a;, the set J of Lemma 3-2 is such that, for 0 < a < 1, the conditions
B =g, ) <3 Vg (12)
" q, a4y

are all satisfied if and only if a is not in J.

Proof. Put a;*N¥, a,a, h;, q; for P, a, h, ¢ in Lemma 3-3; each of the pairs of inequalities (9),
(10), (11), so modified, implies (8) and (9) of §2. The following convention gives what is
required:

(1) if possible, choose the #,/q; to satisfy (12);

(i1) if not, choose them provisionally to satisfy

7 < a; N3, 18 < a%N—'%%—l; (13)

(iii) if the choice in (ii) makes the %,/a,q; all equal, alter the choice of one of the 4,/g; (for
an ¢ for which the second of the inequalities (13) would become impossible on inserting a
factor { on the right) by appealing to part (ii) of Lemma 3-3, modified as above.

In case (i) this choice ensures that all the conditions (12) hold and « is not in J. In the
other two cases, the first of conditions (12) fails and so by the definition of J, « is in J.

(¢) The notation can now be simplified. When (12) holds, denote by %/¢q (¢ a positive
integer, £ an integer prime to ¢) the common value of the rational numbers 4,/a;q,. From
hi/q; = ha;/q, with (k;, q;) = (h, q) = 1, it follows that ¢ = (a;, ¢) ¢;. Notice that a;1f, = a—h/q,
and write a—#h/q = f. Thus we have integers £, ¢ satisfying (for « not in J) the conditions

q>0, (hq)=1 (14)
q< Nia;ia,q) (i=1,...,n) (15)
8 = —’;] <IN et a,g) (i 1,...m). (16)

Conversely, if 4, g satisfy (14), (15), (16), then 4, ¢; defined by k;/q; = ha)/q, (h; q;) = 1,
satisfy all the conditions (12). Note further that, by the last part of Lemma 3-3, the con-
ditions (14) to (16) define a set of non-overlapping intervals.
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234 G. L. WATSON ON
If we now define r'(N) =1'(ay, ...,a,; by, ..., b,; N) by

cey Uy e Uy

7 (N) = Sy(@) ...S, () e(— Nat) o,

0, D-J

then the conclusion of Lemma 3-2 implies

r(N)—7'(N) < A_%N%nw%ﬂ(alaz%aﬁt)i (a5+...+a,)4, (17)
and we have  /(N) ~ 3 él fsl(g +ﬂ) 5(.’; t)e(- hgmNﬁ> dg, (18)
(h,q)=1

where the range of the summation over ¢ is given by (14), (15), and that of the integration
over f by (16). To obtain (18), we have to exclude from the range of integration over « the
interval 0 <a<iN*maxa)?t (h=0,g=1)
and include instead the interval

1 <a<1+iN¥maxa)? (A=1,¢=1).

This makes no difference because of the periodicity of the integrand.
It should be noticed that (15) neither implies nor is implied by ¢ < N*; and (16) does not
imply |f] < N~ig7'.
4. APPROXIMATION ON MAJOR ARCS

(a) We now introduce the notation and estimates that are needed (1) to define manage-
able approximations to the sums S;(/¢+/) occurring in (18) of §3 and (ii) to estimate
the errors of these approximations.

For integers a, b, g, g positive, we define

2
S(a, b, q) = ée(ax ;—bx) "
For real P, §, P positive, we define
P
12,4) = | e(er)de. (2)

For real £, we write as usual [£] for the greatest integer not exceeding £ and define

e ={p & 5 (3)

§—[E]—13%, otherwise.

We note that ¥'(§) has the Fourier expansion

W(E) = — 5 3 17 (i), (#)

where the accent indicates that / = 0 is to be omitted and terms with the same |/| taken to-
gether. We gather together in the shape of a lemma some well-known results.

LemmMa 4-1. We have S(aybyq) =0 if (a,q)1b; (5)
S(a,b,q) < ¢*(a,q)}, always; (6)
I(P,$) < min (P, |57} (7)
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QUADRATIC DIOPHANTINE EQUATIONS 235
(where if f = 0, min (P, 0~%) means P); and
1, always
RE) <|; . 8
O <l o o, ®
where as usual ||§|| denotes the minimum of | — t| for integral t, and
1
R =~ 3 1 ell) (9)
is the remainder (after 2L terms, L > 0) of the Fourier series (4).
Proof. Put x = q(a,q)"'y+2zin (1); this gives

S(a,b,9) = S (") s )

with the summation conditions 0 <y < (a,9), 1 <z < ¢(a,¢q)'. The inner sum clearly
vanishes unless (a, g) divides 4; so (5) follows. Now we may assume (g, ¢)|6 in the proof of
(6) ; but because of the trivial property

S(ka, kb, kqg) = kS(a, b, q) (10)

(k any positive integer) we may also suppose (4, b, ¢) = 1. This and (a, ¢) |6 give (a, q) = 1.
With this, (6) reduces to S(a, b, q) < ¢* and is well known (see, for example, lemma 8 of
Birch & Davenport 1958). For (7) see Vinogradov (1954) (chap. 1, lemma 144). (8) is
straightforward and well known (the Fourier series is boundedly convergent).

(b) Now we consider the problem of approximating to a sum by an integral; it is con-
venient to deal with it, at first, in a more general shape than is actually needed. Let 4, B
be real numbers, 4 < B, and q, b, ¢, z integers, ¢ positive. With a temporary notation, not
to be confused with that of §1, let f(£) be a complex-valued function of the real variable &,
such that f'(£) exists and is continuous in 4 < £ < B. We seek to estimate the expressions

S o) st ) [ F(6) de. (12)

Lemma 4-2. If neither A nor B is an integer, then the expression (11) is equal to

¥(423 A e (P Amy+ e () e e (13

Proof. If ¢ = 1 thisis Euler’s summation formula; the case ¢ > 1 follows on suitably chang-
ing the variables of summation and integration (see, for example, lemmas 5-1, 5-2 of Daven-

port 1959).
LemwMmA 4-3. For every positive €, the expression (12) is
< g4*%(a, @)} Iy fmax | f(§)| + (B—A+1) max | f(£)[}, (14)
where the maxima are taken over A < & < B, and [, is the least value of |l| for | = b modulo (a, q),1 & 0.

29 VoL. 253. A.
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Proof. We may suppose that neither 4 nor B is an integer; for if 4 is slightly increased and
B slightly decreased the expression (12) obviously alters by < max | f(£)|, which is small
enough since /, < (¢,¢) < ¢. So we may appeal to lemma 4-2. We also use (8), taking
L = ¢3. Thus we have to multiply the expression (13) by e((ax?+bx)/q), which with
x = z (mod ¢) is equal to e((az?+bz)/q), and sum over z = 1, ..., g. We do this for each of
the three terms of (13), and in each case deal separately with the partial sum of the Fourier
series and its remainder. Thus (12) is expressed as a sum of six terms, which we dispose of

one by one.
The first of these is

ad Bl o) < iz

Using (5) and (6), with 6 —{ for b, this is
< |fld)lg}(a, 9* 211,

where ¥ is taken over [ < 0, |/| < ¢3, { = b (mod (a, ¢)), and so does not exceed

21 by —
$e(* _Hz%_m_!z)
z=1 q

25 (14 ) <l

The first term is therefore of the required order of magnitude; and two other terms involving
the partial sum of the Fourier series are dealt with similarly.
Now we consider the term f(4) R((4—2z)/q). From (8), with L = ¢3, we have

R((A—z)/q) < ¢! wunless [(4—2z)/qll <q7?

which is the case for < 1 values of z. For these z we use R < 1 and thus have
9 (A—z 1

A SR(®Z) <] (g-071+1) <1714,
which is small enough; and f(B) 2XR((B—z)/q) is dealt with similarly.

It remains to consider
R(élz)
q

s e(%2+lz)fBR<§i:E)f'(g) d¢ < qumax

z=1 q A q 4z
Consider first the part of the interval 4 < § << B on which ||| = 1/4¢, which, for all integral
z, implies ||(§—2)/q|| = 1/44¢% and so, by (8) with L = ¢3, R((§—2z)/q) < ¢~!. Clearly there-
fore the contribution to the integral from this part of the interval is small enough. On the
remainder of the interval, whose measure is clearly < (B—A4+-1) ¢7!, the crude estimate
R < 1 suffices and the proofis complete.

We cannot make effective use of the factor /;! in the estimate of lemma 4-3 except by

introducing another summation.

(&)1 dé.

LEMMA 4-4.
| 2 B |
$ () fia) — g15a, b, ) [ 16) |
(h,hq=)1=l A<x<B q 4

< ¢*"%(a, ) H{max [f(€) |+ (B— A1) max | f'(§)[}-
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Proof. Replace [5lin (14) by [5!(h), where [,(k) is defined like /,, but with bA for b. I,(%)
takes a set of at most ¢ distinct values, each of which is a positive multiple of (a, b, ¢) and
arises from < ¢(a, b, q)/(a, q) values of 4. The estimate

2l (k) < g'e(e, q)7!

follows easily, and leads to the desired result.

(¢) We now approximate to the sums S;(%/¢+/) in (18) of §3. From the nature of our
problem, the estimate for the resulting error has to be as good as possible; but there are
two difficulties. First, the linear termin (3) of § 2 forces us to approximate to S; with an error
estimated in terms of ¢, instead of ¢/(a,, q), as would be possible with §; = 0; lemma 4-4
retrieves what is lost in this way. Secondly, our rational approximation #/q to « is neither
simple nor accurate, as noted at the end of §3. Because of these difficulties it does not seem
possible either to improve the estimates or to obtain them more simply, by merely quoting
the literature.

We define, for¢ =1, ...,n,

$t (3 ) = ' Stah b, g) a7V ), (1)

although the approximation to S; whose error can be dealt with directly by specializing
lemmas 4-3, 4-4 is not this but the more complicated expression

Bi
g~ S(a;h, b;h, q) f e(a; fE% -0, f€) dé, (16)

i
with 4;, B; such that a;A?+b,A; = a,B?+b,B, = N, A, <B,. (17)

We prove:
LemmA 4-5. For h, q, f satisfying (14), (15), (16) of § 3, and all positive ¢, we have
S(5-+8)| +|57(3-+4)| < aras 0t Ngha NIAD, (18)
3 15(8) (i +8)| < (@M. (19)
)=1

Proof. To obtain (18), we estimate §; by using (14) of §2, putting ¢, = ¢/(a;, q),f; = 4,5,
as in the argument leading to (14), (15), (16) of §3. For $¥ we use (5), (6), (15), with
a;h, bk, N* for a,b, P; and (h, q) = 1.

To obtain (19), put a;, b;, 4, B; for a, b, A, B in lemma 4-4, and note that 4; and B, are
< a;tNt by (17) and (2), (6) of §2. Put f(§) = e(a;p%+b,4E), which gives | /()| = 1 and,

for di<8<Bus  |p(p)| = |20 fE+b,8 < a)p|(|E]+1) < dNY|g).

This would give (19) if we defined S} to be the expression (16), since the sum on the left of
the estimate of lemma 4-4 (with the foregoing substitutions) is S,.

To estimate the further error resulting from replacement of the expression (16) by (15),
we crudely estimate the factor ¢1S(a;%, b;%, q) to be < 1, since S(a;k, b;h, q) is a sum of ¢
terms each with modulus 1, and consider the difference between the integral in (16) and

29g-2
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ar*I(N%, §). We multiply the integral in (16) by e(b24/4a,) ; since |b;| < g, as previously noted

((2) of §2), this leads to an error
2 1
< (Bi—4) {1 ~e(%~’?)} < (Bi—4)) | =5 | < dNH ).

a;

|

bif
a;
The integral in (16) thus becomes

fj:e {aiﬂ(§+2—b£ll;)2} d¢ = ai—%fe(/ggZ) d¢

on putting a; ¥ —b,/2a; for £. The limits on the right are easily seen to differ from + N* by
< 1. The further error in the left member of (19) is thus less than the right member, being

< g(a@ NYB| +aih) < g(N || +1).

5. THE ASYMPTOTIC FORMULA
(a) We now define r*(N) = r*(a,, ..., a,; b, ...,b,; N) by
() =33 [s#(2 ). s1(o+8) o " ~ ) ap 1)
q h

with summation over ¢, £ and integration over f as in the expression for '(N) in (18) of
§3. We prove:

LemMA 5:1. 7 (N)—7*(N) < A~ Nin-¥+e(q a,a,a,)* (a5+... +a,)t.
Progf. With integration and summation as in (1), write, forj = 1,...,n,
h h h
E =335 ) -t(: ) st(t+)) e
qv h q q q
It is clear that |/'(N) —r*(N)| < E,+ ...+ E,; so it will suffice to prove
E, < A Ntte(q a5050,a,) (2)

Hmax(!Si(ngﬂ)jJr

i*j h

For then on permuting the suffixes 1, 2, 3, 4, n we obtain the same estimate for E,, ..., E,,

and permuting 5, ...,nwe estimate E;, ..., E,_,.

Using (15) of §3 and (19) of £4, with ¢ = n, we find
h h
sfis) s

q 4 q d

Now using also (18) of §4, with ¢ =1, ...,n—1, we have

< a;iNteq(1+ N|B)).

n—1
E, < A MNb-be s ghoon T (a, )} (1 N]g) o d.
q i=1

The limits for § lie between + N-* by (16) of § 3, so the integral over f, using n> 5,is < N°~L.
Putting ¢ for ¢ and noting that (6) of §2 and (15) of §3 give ¢ < N < N°*, we find

n—1
E, < dla-iNv-tses glo-n ] (a, )%
q i=1 :
This gives (2) if we prove

51

n—1 :
zlg%(ff—n)l;[l (a;, q)% < Ne(ala2a3a4)ii (3)

q=
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To prove (3), which will be needed again later, write g = (A, ¢), ¢ = gk, and use again
n = 5; the left member of (3) is at most

NoT Lo L Nt Yoo '
> 280l (a,8)* k¢ < 3 k1 3 1. max gx®-"]] (a, g)*.
gla k=1 i=1 k=1 gla gla i=1

The product of the two sums on the right is
< (NSnA)e/lOn —_ (N5nal s an)e/IOn < Ne’
using (6) of §2. Estimating the remaining factor by using (g, g) < min (a?g?, ), (3) follows
and the proof of the lemma is complete. The next step is:
LemmA 5-2. The estimate of lemma 5-1 remains valid if r*(N) is replaced by r**(N), defined in
the same way as r* (N) but with the range of integration over ff extended to (— 00, 00).

Proof. Denote by M = M(q) the bound for N|f| given by (16) of §3. Use (18) of §4, and
note that, by (7) of §4, it is valid as far as $¥ is concerned without any restriction on #. It
follows (summing over 4) that

(V) —r*#(N) < AENbe S g (a, )3 [N
q i=1
Here the integral is taken over |[f| = MN-!, and sois < M!"#N-1 < M-IN-1,
From the definition of M, we have, for some i,
M} < N-gha(a, g) % (4)

The contribution to the estimate for 7*(N)—r**(N) from the ¢ for which (4) holds with
¢ = n (which as in lemma 5-1 are all at most N%") is

>

1 1 Nsn 1 n-_l 1 1
< a% A-ENtn-tre s ¢ T] (a, 9)% < A_EN%"“%”e(al ayaya,a,)*
q=1 =1

using (3). Permuting the suffixes as in Lemma 5-1 to deal with the ¢ for which (4) holds with
1=1,...,n—1, the lemma follows.

(6) Now we define A(q, N) = A(ay, ...,a,; by, ...,b,;q, N) by

q h n
Alg M) =g 3 (=3 TTS(@h b,h,q). (5)
h=1 i=1
(h,q)=1
Crudely (6) of §4 gives A(g, N) < ¢ ¥TT (a, ). (6)
i=1

Referring to (15) of §4, we see that

=00

PHN) = AVS Al N) [ e(— N P(NY) dp. (7)

Here the range of summation over ¢ is as in (1). The integral is absolutely convergent (for
n > 2) by (7) of §4. Putting P = N*,{ = Ny, in (2) of §4, we see that

INY, ) = NYI(1, NB),
whence it is easily deduced that

|” e(—np P, ) dp = 0, i, | (8)
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with ¢, depending only on z. Thus (7) may be rewritten as
r**(N) = 0,A NI S A(g, N), (9)
q

again with summation over ¢ as in (1).

The value of 4, could be determined in various ways, making use of the fact that it depends
only on 7n; we might for example put all the 4, equal to zero, and then compare the asymp-
totic formula which we shall obtain with that in, for example, Ross & Pall (1946). It is
possible, however, because of the linear terms in the Diophantine equation under considera-
tion, to give a simple and self-contained proof.

LemMma 5-3. The constant 0, in (8), (9) is equal to inJ,, where J, = 2m*/nT(3n) is the content of
the n-dimensional sphere £3+ ... +§2 < 1.

Proof. Taking advantage of the fact that 4, depends only on 7z, we specialize by taking
a, = ...=a,=kl,b, = ... = b, = 1, kalarge positive integer; that is, we consider the special
case EUx2+ ... +a2) +x,+...+x, = N
of the equation (1) of §2. With this specialization, (5) of §4 gives A(g, N) = 0 unless ¢ is
prime to k!, in which case (6) gives A(q, N) < ¢'~#* < ¢~¥. The sum over ¢ in (9) is therefore
approximately 1 for large £.

Write for brevity X ~ ¥, X, ¥ being functions of £, N, to denote that the upper and lower
limits of X/Y, as N — o0, both tend to 1 as £ - co. Then by the foregoing remark

r(N) ~ r**(N) ~ 0, A"t N¥n-1 = g (k!)~#nNin-1
whence r(1) + ... +7(N) ~ 20710, (k) ~in Nin,
But (1) 4-...+7(N) is the number of points with integral co-ordinates in the sphere
KVEF ... +8&2) +& 4 ... FE, < N.
Hence r(1)+...4+r(N) ~ V(k, N),
where V(k,N) ~ J (k") Nin

is the volume of this sphere; the result follows.
(¢) The next step in the process of approximation to is to extend to infinity the sum over
¢ in (9); we prove: :

LeEMMA 5-4. We have
Z; |4(¢q, N) | < ivﬁ”i(a1a2a3a4)i(as—|—... +an)7}3
i=

where the accent denotes exclusion of the q in_formula (9), and the series is absolutely convergent.
Proof. The convergence follows trivially from (6), with » = 5. Consider first the sum over
g > N2, implying ¢ > (maxa,;)*" ((6) of §2). For such ¢, (a;,¢q) < ¢"/?" and so (6) gives
A(g, N) < q—%s 2 | Alg, N)‘ < N,

Next take the ¢, not exceeding N°*, for which the summation condition (15) of §3 fails
for i = n; the sum over these ¢ may be estimated by using (6), (3), after multiplying the
summand |4(q, N)| by ¢! N-*ak(a,, ¢)~*, which (for the ¢ in question) is at least 1.
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Similarly dealing with the ¢ for which (15) of § 3 fails for other values of ¢, the lemma follows.
Finally we replace N¥~lin (9) by (N -+ b%/4a, + ... +b%/4a,)"~1, s0 as to make the approxi-
mation to 7(N) a little easier to handle later. The final approximation is thus

i 152 1 52\ -1
—_ A% | q=n
p(N) = g (N+4al+... | 4%) (W), (10)
where S(N) = &(ay,...,a,; by bys N) = 3 Alg, N) < A¢addb (11)
q=1

is the singular series, estimated by summing (6) as in the proof of (3). We have
*(N)—p(N) < A~ iNin-tre(q a,a,a,)t (a5+ ...+ a,)* (12)

(by (17) of §3, Lemmas 5-2 and 5-4, and || < a; < N ((2), (6) of §2), which give

15} LN vhoet ¢ e
(N+Za—l+...fzzl;) — Nl < N*~2maxa,).

To simplify the argument later, we prove:

LeEMMA 5:5. The estimate

(a1a2a3a4)i(a5+...+an)i (13)

2 2\ sn—%+e
(W) —p(N) < A4V + L6y ”n)

1&: -|_ e + &;
is valid without any conditions on the parameters in the equation (1) of §2 except that n > 5, the a; are
posttive integers, the b; and N are integers, and
153 162
N+Za++zgé>z(dl+...+dn) (14:)

Proof. The hypotheses and conclusion of the lemma are invariant under trivial sub-
stitutions x;—x;+-¢;; hence, see (2) of §2 and the remark following, we may suppose
|6, < a; (for all ¢). With this, (14) implies (6) of §2; and now all the hypotheses of §2
hold. It follows that (12), implying (13), is satisfied, which completes the proof
of the lemma.

It could easily be shown (using z > 5) that &(N) is a non-negative real number which
vanishes only when congruence considerations imply 7(N) = 0, and which, if values of N
for which this is the case are excluded, has a positive lower bound depending only on the
a;. Thus, interpreting 0/0 as 1, we have, from (12) or (13),

:,)%\%_}1 as N-— 0. (15)
We seek to sharpen (15) by estimating 1 —7(N)/p(N). The estimate desired follows if we can
prove that the lower bound just mentioned is > A~¢, for arbitrary positive ¢. This is not al-
ways the case, but we show in the next section that it is true if we impose a certain congruence
condition on the Diophantine equation. Then an arithmetical argument shows that the
estimate for 1 —7(N)/p(N) is still valid if this condition is omitted.
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6. THE SINGULAR SERIES

(a) In this section it will be convenient to write

1

Q = Q(xy, ..., x,) = 2 (a;x7+b;x;),

=1
so that the Diophantine equation (1) of §21is @ = N. We shall say that this equation satisfies
the necessary congruence condition if the congruence @ = N (mod m) is soluble for every positive
integer m. Denote by C(m, N) the number of solutions of this congruence ; then the necessary
congruence condition is C(m, N) > 0 for all positive integers .
It is easily shown (see for example, Vinogradov 1954, chap. IT, lemma 10, for the method)

that S A(g, N) = m'="C(m, N). (1)
qlm

The right member of this equation being an obviously multiplicative function of m (for
fixed a;,b,, N) we see that

IEA(% N) :leIlg A(pl5N)5 (2)
qm m ptim
where p denotes a prime. Write

X(p,N) = S A, N) = 1+ 3 A(p, N). 3)

(Lemma 5-4 shows that this series, for each p, is absolutely convergent, asis & (N).) It follows
that X(p V) = limpe-mC(pe, N), (4

and, making m in (2) tend to infinity through a suitable sequence of values, that
@(N)=IPTX(P,N), (5)

the infinite product, taken over p = 2, 3, 5, ..., being absolutely convergent.
We say that the equation @ = N satisfies the strong congruence condition if the congruence
() = N(modm) has for every positive integer m a solution satisfying
(‘7_;‘2 99
dx,’ " ox,’
Denote by C'(m, N) the number of solutions of ¢ = N(modm) that satisfy (6) also; thus the
strong congruence condition is C’(m, N) > 0 for all positive integers m.
A well known inductive construction for the solutions of @ = N (mod p*) and (6), with
m = p*, gives u=4 (p=2)
C"uN:n—l’u—l,N f{/
() = poicpt Ny i (20 S

The construction depends only on the assumption that ¢ is a polynomial with integral
coeflicients; it is given for  a cubic form (but the argument is quite general) in Davenport
(1959) (put/ =1, 2for p =, = 2in lemma 2-3). It follows that

C(p, N) = C'(p, N) = premest=nC? (p, N) - for w=2, p+2,
and C(24 N) = (C'(2¢, N) = 2n-ut3=3n("(8 N), for u> 4,

m) =1or 2. (6)

prrC(p, N) (P +2)
whence by (4) x(p, N) = 81-nC'(8, N) (p=2). @)
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(b) We seek to deduce a lower estimate for y(p, N) from the assumption C’(p, N) > 0 or
C'(8, N) > 0; (7) gives what will suffice when p = 2, so we are concerned with odd p. The
first step is to show that the 4, may be ignored.

LemmA 6-1. For odd p, either x(p, N) = 1 or a suitable substitution x; — x;-+1; takes the congru-
ence Q = N(mod p) into one of the shape

a; %2+ ...+a,x2 = N, (mod p) (8)
and (6) with m = p into A1 Xqy ey QX = 0, ..., 0 (modp). (9)
Proof. The second alternative clearly holds if integers # can be chosen to satisfy
2a;t;+b;,= 0 (modp), i1=1,...,n;

the integer N, is N—2(a;t2+b;,t;).

If these congruences cannot be satisfied then clearly there is an i with p|2a, p/4,. Since
p=2, assume without loss of generality that p|a,, p{b,. Then (6) with m = p is always
satisfied, while @ = N (mod p) holds, for each set of values of xy, ..., ,_, for just one value of
%, modulo p. Clearly therefore C(p, N) = C’(p, N) = p"~1, x(p, N) = 1.

Now for odd p with x(p, N) + 1, C(p, N) is the number of solutions of (8), C'(p, N) that
of (8) and (9), and these numbers are equal unless p|N,.

~ LEmMA 6:2. Forn> 1, p{2N,, (8) has > p"~1 solutions if at most n—2 of the a; are divisible by
b, and otherwise either 2™ or none.

Proof. Ttis clear that in either case we lose nothing by supposing all the g; prime to p; with
this, the second assertion becomes trivial. In the proof of the first we may use induction for
n > 3, choosing x,, in at least p—2 > p ways, so that a,x2 == N,(modp), and then counting
the number of possibilities for x, ..., x,_,, for each value of «,.

We have now only to show that a,x}+a,x3 = N, (modp), with p{2a,a, N;, has > p
solutions. We divide by p—1 the number of solutions of a,x}+a,x43 = N,x3(mod p) with
p{x;. Clearly this congruence has at most 2p—1 solutions with p|x,, so the second part of
the next lemma completes the proof of this.

LemmA 6-3. The congruence (8), with p <= 2, Ny = 0, has > p"=1 solutions satisfying (9), pro-
vided, in case p divides n—2 or more of the a,, that it has at least one such solution. In case n = 3
and p == 2, N, = 0, p{a,a,a,, (8) has p* solutions.

Proof. Again we may suppose without loss of generality that p divides none of the a;. The
case n < 2 is now clear, since any one solution of (8), (9), with N, = 0, yields p—2 others
on multiplying by 2, ...,p—1. ;

Assuming for the moment that the lemma is true for n = 3 then lemma 6-2 may be used,
and counting the possibilities for the other x;, for each of the values 1, ...,p of x,, the case
n > 4 is disposed of by induction.

It remains to prove that a;x}+a,x3+asx3 = 0 (mod p), p{2a, a,as, has just p? solutions.
We can transform this last congruence, by a suitable change of variables, into

Y1Y>—4a,a,4393 = 0 (mod )
(Watson 1960, theorem 29), whence its solutions are easily counted and the proof is
complete.

30 Vor. 253. A.


http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

|

SOCIETY

/|

A

SOCIETY

A 2

OF

OF

Downloaded from rsta.royalsocietypublishing.org

244 G. L. WATSON ON

From (7), and the foregoing lemmas ((7) alone sufficing for p = 2, or indeed for p < 1),
it follows that the strong congruence condition implies

x(p, N) > 1 forall p. (10)
(¢) We deduce:

LemMA 64 G (N) defined by (5) is a non-negative real number. If the Diophantine equation
Q = N, n = 5, satisfies the strong congruence condition then & (N) does not vanish and

(@(N)~t < (m?Xdi)e-

Proof. The first assertion is clear from (4), (5).
Now note that (10) gives

max (0, —logx(p, N)) <log (1+|1—x(p, N)|) <[1—x(p, N)|. (11)
Also that (6) of §5, with ¢ = p, p?, ...,and (3) give
1—x(p, N) < p=i»<p=t if pla,...a, (12)
It follows that %’ max (0, —logy(p, N)) < %p‘% <1,

where the accent denotes the exclusion of p to which (12) is inapplicable. On the other
hand, denoting the inclusion of these p only (that is, the p dividing «, ... q,) by a double
accent we have, for any positive ¢, using (10),

>"max (0, —logx(p, N)) < X" 1 < e¢log maxa,.
b b i

The lemma follows.
An immediate consequence is:

LEmMA 6-5. The hypotheses of lemma 5+5 together with the strong congruence condition for the
equation Q = N, imply p(N) == 0 and

r(N) 152 h2\e~% e Lie
,o(N)Ml < (N+1;1+"'+Zn) (a,aqa5a,)%%¢ (a5+ ... +a,)%*e.

7. TRANSFORMATION OF THE DIAGONAL EQUATION
(a) Let the equation (1) of §2, that is,
2 (@57 +b;x) = N, (1)
i=1

be taken into another equation of the same shape, say
n
2 (%2 +bix) = N, (2)
=1
by a linear transformation of the variables, say

x; = m; x;+ ¢, (3)

The transformation (3) (in which the m; are positive integers and the ¢ integers) will be
so chosen that the solutions of (1), (2) are in one-to-one correspondence, whence

7(@ys ooy @y by ooy by N) =r(ag, ...y ay; by, .0y by NY)s (4)
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and so that further the analytic approximations to the two sides of (4) coincide, that is
Py eas@y; byyiybyy N) = plag, ..., ap; by .. by; NYY. (5)

Still further, assuming that (1) satisfies the necessary congruence condition defined in
§ 6, the transformation (3) will be so chosen that (2) also satisfies this condition. The ulti-
mate object, which will be achieved by successive steps, is that (2) should satisfy the strong
congruence condition.

LemMA 7-1. Suppose that the transformation (3) reduces to the identity; so that equations (1), (2)
differ, except for the accents, merely by a constant factor. Then (4) and (5) hold, and (2) satisfies the
necessary congruence condition if (1) does.

Proof. Except for (5), all the assertions are trivial. In the proofof (5) we may suppose that
some prime p divides all of the a;, b; and N, and that a; = p~la;, b; = p~1b;, N' = p~'N. Now
use (10) of §5 and (5) of §6, and write more explicitly x(a,, ..., a,; by, ..., b,; p, N) for x(p, N).

This shows that the ratio of the right to the left member of (5) is

Inpl—3n (X(l)~la19 -"ub—lan;lb—lbm . >p¥lbn; %p—lN))
e I;I x(@ps .5 @, by ...,0,5 g, N) ’

where ¢ temporarily denotes a prime, and the product is taken over all primes. Itis almost
immediate from (4) of §6 that each factor with ¢ == p is equal to 1. We have only to prove
that the factor with ¢ = p is equal to p~!; and this, again using (4) of §6, reduces to proving

Clay, ...yy3 by, by pHYL, N) = prClp~tay, .. play; p=10y, oo p 10,5 p% p7IN).
(Here the notation C(m, N) of §6 has been replaced by C(a,,...,a,; b;,...,5,; m,N), t

*2%n>
avoid confusion.) This last formula is however clear; it merely expresses that each solutlon
of a congruence modulo p* counts, trivially, as p” solutions of the congruence obtained by

multiplying both sides, and the modulus ¥, by p. This completes the proof.

LemMma 7-2. The assertions of lemma 7-1 all hold if the transformation (3) is
x; = fori=kj,  x = pxi+t,

Jfor some j and some prime p, provided that there exists a positive integer m such that the congruence
Q = N (modm) of §6 implies x; = t; (mod p).

Proof. This is trivial except as regards (5), which is proved as in lemma 7-1.

It will be convenient to write

L= ayayaza,(a5+...+a,), 4 = ayayasa,(as+ ... +ay), (9)
b= 0@y sy @3 by s h s N) = N zbz\[

12 cc9%ps U2y cres Uy zzlai (7)
V= 0@y .y aly By Bl N). |

Ifin (3) each m; is 1, then, for any integers ¢, it is trivial that all the assertions of lemma 7-1
hold; and further that v = v’ (provided that (2) is the equation derived from (1) by the
substitution (3), without multiplying or dividing by any constant). Hence »" may, in
other cases, be calculated on the assumption that the ¢ all vanish.

30-2
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(b) If the condition (6) of §6 is not satisfied, then there must be a prime p such that the
left member, which is the greatest common divisor of the numbers 2a,x;+ b,, m, is divisible
by p (or by 4 if p = 2). This may be expressed by the formulae

p|b; for each ¢ with p|2a;; (8)
4|6, foreach¢with 2la, if p = 2; (9)
x; =t (modp) foreach:with pfa; (10)

where in (10) the ¢ satisfy 24,4+ b; = 0 modulo p or 4; by (8), (9) these congruences are
soluble.

LemMA 7-3. (7). If the equation (1) satisfies the necessary congruence condition but not the strong
one, then there exists a prime p such that (8) and (9) hold, while (10) is implied by the congruence
Q = N modulo p (if p == 2) or 8 (if p = 2), where Q) denotes the left member of (1).

(@) Ifp == 2, 0rif p = 2 and one of the a; is oddly even, then p divides at least n— 2 of the a;; and the

transformation x, =% if pla, pxi+t if pla, (11)

takes (1) into an equation of the shape (2) from which a factor p can be cancelled.
(12) If p = 2, and each a; is either odd or divisible by 4, then 2 divides at least n— 4 of the a;; and the
transformation (11) takes (1) into an equation of the shape (2) from which a_factor 4 can be cancelled.

Proof. (i) It is clear from the definitions in §6, and the foregoing argument, that (8), and
(9) if p = 2, must hold for some p for which also, for some positive 7 (a multiple of p or of 4)
@ = N (modm) implies (10). It is also clear (see (4) and (7) of §6) that this implication
holds, if at all, for m = p or 8.

(i), (iii). The assertions regarding the cancellation of p or 4 after the transformation (11)
are obvious. For p # 2, lemma 6-2 tells us that if p divides fewer than n— 2 of the 4, then
@ = N (mod p) has always a solution satisfying (6) of §6.

What remains to be proved for p = 2 follows casily if we show, using (8) and putting
n—4 or n—>5 of the x; equal to 0, that each of the congruences

4
> (a;x2+b;x;) = N (mod 8), 2{a,a,as,a, =2 (mod4), (12)
=1

5
> (a;x3+b,x;) = N (mod8), 2{a,a,asa,a5,a, = a; (mod4), (13)
=1

has a solution satisfying 2a,x,+b, == 0 (mod 4) (14)

for every integer N.

The solubility of (13) and (14) follows from that of (12) and (14) by putting x, = x,. To
solve (12) and (14), choose ¥, to satisfy (14). Now note that ;42 + b,; can be either odd or
even for ¢ = 2 and for ¢ = 3 (4) takes two values differing by 4(2) modulo 8.

LEMMA 7-4. Assume the hypotheses of lemma 7-3, choose p as in that lemma, and let the equation (2)
be derived from (1) by making the substitution (11) and then cancelling a factor p or 4 according as
(e2) or (uz) of lemma 7-3 is applicable. Then all the assertions of lemma 7-1 hold and also

!
v
— =
P

’

W< iy , v <. (15)

="
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Proof. That the assertions of lemma 7-1 hold follows from that lemma and lemma 7-2.
It may be necessary to use both these lemmas, the second more than once; thus the argu-
ment proceeds by steps, the equation (1) of each but the first being the (2) of the preceding
step. There should however be no risk of confusion in the notation.

Now suppose that part (ii) of lemma 7-3 is applicable; and (see remark following (7)) that
all the ¢; vanish. If the factor p were not cancelled we should have N’ = N and q;, b; = a;, b,,
except for at most two values (possibly none) of 7, for which aj, b; = p%a;, pb;,. Now cancelling

p we have N’ :[)_IN; a;, b; :lbdi, bi or pgldi:palbia

23 71
with the first alternative applicable for at most two values of . It is clear that this gives,
using (6)9 (7)9 ﬂ, gp—lﬂ, v’ :p—lv’
whence (15) follows.
In case (iii) of lemma 7-3 the argument is similar.

LemmMa 7-5. If the equation (1) satisfies the necessary congruence condition but not the strong one,
then there exists an equation (2) satisfying the strong congruence condition and such that (4), (5) and

(15) hold.

Proof. Apply lemma 7-4 repeatedly; for the notation, see the remark at the beginning of
the proof of lemma 7-4. At each step, any value of p (not necessarily the same each time) for
which the assertions of lemma 7-3 hold may be chosen. The process stops after finitely many
steps since the positive integer 4 decreases at each step, by (15). After the last step, the im-
possibility of a further step shows, by lemma 7-3, that the final equation satisfies the strong
congruence condition.

(¢) We deduce from lemmas 6+5, 7-5

TrEOREM 3. Let r(N) denote the number of solutions, in integers x;, of the equation

S

(a;47+b;x%;) = N,

[

where n = 5 and the a; are positive integers and the b, and N integers, such that
N-+b%/4a,+ ...+ b%[4a, > 0.

Then there exists an analytical approximation p(N) (defined in (10) of §5) to r(N), such that
p(N) = 0, with equality if and only if some congruence

]

(a;x3+b;x;) = N(modm)

i=1

i

(with m a positive integer) is insoluble. And if every such congruence is soluble then the estimate

7(N) 152 152
p(]\’)——l < (N+Za%-...+1a—n

e—%
) (ayaya4 ‘14)”% (ag+...+ an)”i

holds for every ¢ > 0, with an implied constant depending only on n, e, provided that (14) of §5 holds.
Progf. With the notation of the foregoing lemmas, the desired estimate is
. r(N) } _1
min {1, =4 — 1} <€ pe-iyeti,
{ p(N) ST
30-3
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It follows at once, for ¢ less than %, from
r(N) e-lieid
p(N)~—l<V uett af v>2u. (16)

To prove (16) for the case in which the given equation satisfies the strong congruence
condition, we appeal to lemma 6-5, noting that » > 2u (crudely) implies (14) of §5.

In the other case (16) must hold for the transformed equation of lemma 7-5, whence
by that lemma we have either 2> v'/u’ >v/u or

r(N)
p(N)

—1< V’e~%;ﬂ’e+%< Ve+r}~/ue+%

using (15). g
¢

1—4¢

Putting 7(N) = 0,p(N) > 0, and replacing ¢ by ¢’ such that = 1+1e, the estimate

(6) of theorem 1 follows.
8. QUADRATIC CONGRUENCES

(a) The results of this section are valid for indefinite as well as for definite quadratic
forms, and the assumption z > 5 is not needed.

Asin Watson (1960), the matrix 4 = A( f) of the quadratic form f = f(x,, ...,,) is defined
to be the symmetric 7 X » matrix whose (7, j) element is d2//dx;dx;. The discriminant d = d( f)
is defined in terms of the determinant |4| by

d = (—1)¥|4] (neven), 3(—1)H4[ (n 0dd). (1)
When the coeflicients of f are integers, 4 is an integer. In particular,

(—4)a, ...a, (neven)

2 ves | 2 = 1 3 2
d(a,x3+ ...+ a,x2) l(___4)2'ﬂ"§al.,.a (nodd) 2

n
for a diagonal form.
For the proof of theorem 2, it is clearly sufficient to examine what conditions must be

satisfied by 4 and the prime power modulus p* if the congruence

F(o1s s 5) H byt + by, = N (mod ) (3)
is not soluble in integers, although there exist integers y; satisfying
S s ¥) o191+ by, = N (mod p71). (4)

The case ¢ = 1, in which this assumption is vacuous, is not excluded. :
Denote the left member of (4) by N—Ap!~1, k being an integer; then the substitution
x; — x;,+y; takes (3) into a congruence of the shape

S1s cees ) 012y ey, = g1 (mod ), (5)

which is also insoluble. Denote by 4;; the coefficient of x;x; in f.
The following lemma will simplify the investigation of the congruence (5):

LemMa 8:1. Every n-ary quadratic form with integral coefficients can, for any prescribed prime
power P, be taken, by a linear transformation of the variables which has integral coefficients with deter-
minant prime to p, into a form f satisfying one of the following congruences, identically in the variables:

f(x, %5, 0, ...,0) = %%, (mod p*) (n=2), (6)
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S=(2,%) (modp) (n=>2), (7)
J=ayat (modp), play, (8)

S=0 (modp), (9)

where Y in (7) denotes a binary quadratic form whose discriminant is prime to p and not a quadratic
residue modulo p, in case p is odd, and d(yy) = —3 (mod 8) if p = 2.

Proof. For p + 2 the lemma follows from the classical result that every quadratic form
can be diagonalized modulo p* by a transformation of the kind allowed. The diagonal co-
efficients that do not divide by p can, with one exception, be chosen arbitrarily and taken to
be 1, —1 alternately. The remaining one (if any) can be chosen to be either —1 or —g, g any
non-residue modulo p. Hence noting that x7—x% transforms into x, x,, we have the result,
with ¢ = x2—gx3. The result however follows at once from Watson (1960), theorem
32.

When p = 2, (8) or (9) must clearly hold after a suitable transformation if the a; (z 4 j)
are all even; and if not, Watson (1960), theorem 35, or an analogous result to be found at
many places in the literature, shows at once that (6) or (7) can be satisfied, with

¥ = X34 x,%,+x3.
(b) Theorem 2 will follow from the following lemma:

LemmA 8-2. Let f be a quadratic form with integral coefficients and discriminant d, and let c,, ... c,, h
be any integers, p any prime, and t any positive integer. Then if (5) is insoluble

P9, (10)

Proof. Supposing the lemma false for some given 7, p, choose f, ¢y, ...,¢,, &, t so that (5) is
insoluble, (10) false, and ¢ as small as possible; and assume by lemma 8-1 that one of (6) to
(9) holds. We shall deduce a contradiction.

Now in case (6) (5) is obviously soluble, so one of (7), (8), (9) must hold. From any of
these, and (1), it is easy to see that p"~2|d, which with the negation of (10) gives the first
two of

t=2,n>4,c,=...=¢,=0 (modp). (11)
For the last of these formulae, note thatif p{¢, then x,, ..., x, = p*~1x{,0, ..., 0 takes (5) into a
linear congruence which is clearly soluble. A similar argument shows that

Plf(xy, ..., x,) implies  ple,x+...+c,x, (12)
(for integers x;). '

If (9) holds, we see from (11) that a factor p will cancel from the congruence (5), taking it
into a congruence, of the same shape but with p~1f, p~1¢,, t— 1 for f, ¢;, t, which is also insoluble.
Since pB3MED-14(p=1f) = pB-mi=44( f) cannot be an integer if p3-"¢-14( ) is not, that is if
(10) fails, this contradicts the assumption that ¢ is as small as possible.

If (8) holds we argue similarly, but putting px, for x, before cancelling p from (5). The
new insoluble congruence so obtained has again ¢t—1 in place of ¢, and p2-"d in place of d,

hence p3-"¢-24 in place of p®-"¢-14. Again the assumption that ¢ is as small as possible is
contradicted.
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Hence (7) must hold; but now the argument of lemma 8-1 tells us a little more, namely
that we may suppose f = ¥(x,, x,) +pg(x5, x,) (mod p?), for an integral form g. And applying
lemma 81 to g, we see that we may suppose f to satisfy one of the congruences

J(0,0, %5, 24,0, ..., 0) = pxgx, (mod p?), (13)
J = Y%y, %) +pY (%5, %4) (mod p?), (14)
S = 9%y, x5) +paxg (mod p?),  pla, (15)
J=¥(x,%,) (modp?). (16)

In case (13) it follows from (11) that (5) is soluble, contrary to hypothesis. In cases (15),
(16) we see from (1) that p2»=3*1|d, whence the falsity of (10) gives # > 3 and so (12) gives
p?les, ..y c,. It follows that after putting pxy, px, for x,, x, in each of these two cases, and also
pxs for x4 in case (15), a factor p? will cancel from (5). The new insoluble congruence so
obtained has ¢—2 for ¢ and either p8-22d or p*-2"d for d; a straightforward calculation like
that in cases (8), (9) shows that it again gives a contradiction with the assumption that is as
small as possible.

There remains only case (14), in which we drop the assumption that (10) is false and
prove (5) soluble. In doing this we may take n = 4; the argument of lemma 8-1 shows that
we may assume f = (%, ¥,) +p¥ (x5, x,). We put pxs, px,, 1, x, for x,, x5, x5, x4, and so take
finto pf; whence cancelling p from (5) we have a congruence of the same shape, with the
same f, but with ¢{—1 for ¢. Finally, repeating this argument /—1 times, we have only to
show that ¢ = & (mod p) is soluble. This is trivial for p = 2 and for p|A, and follows in other
cases from lemma 6-2, so the proof is complete.

(¢) Proof of theorem 2. Theorem 2 asserts in effect that the congruence (2) of §1 is soluble
for every positive integer m if it is soluble for all m satistying

w3 TIpld. )

pld

This hypothesis is equivalent to the solubility of the congruence form|m;, or form = m,, where
m, is the greatest positive m satisfying (17). The further assertion of theorem 2 that this con-
dition may be weakened to m = m, (or to m|m,) for some m, satisfying (17), hence dividing
m,, and depending only on f, follows trivially. Now it is sufficient to take m to be a prime
power #, and when we do so (17) reduces to (10), and the congruence (2) of §1 to (3).
Hence if the theorem is false there exist f, b, ..., b,, N, p such that (3) is insoluble for some ¢
not satisfying (10), although it becomes soluble when ¢is replaced by any (smaller) number
satisfying (10). Choosing the least ¢ for which (3) is insoluble, (4) is soluble, some congruence
of the shape (5) is insoluble, and lemma 8-2 gives the contradiction that ¢ does satisfy (10).

9. CONCLUSION

(a) In this section, f= f{x,...,%,) is a positive quadratic form, whose coeflicients
a;; are integers. It is convenient to write

fi=flx1 035, 0,...,0), for i=1,...,n—1. (1)
Each f, is a positive i-ary form, so d(f;) = 0. The assumption that f is positive gives
2
% < 4ty 5O 0< |d(f)| < ayy .. a (2)
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Theorem 2 is applicable to the f; with 7 > 4, and gives
my3(f) <|d(f)], i=4,..,n—L. (3)

The coeflicients of the linear terms, also the constant term, in any equation or congruence
of the shape of (1) or (2) of §1, are to be understood to be integers.

LEMMA 9-1. If the congruence (2) of §1, that is
S(xyy oy %,) 02,4+ ...+b,x, = N (modm), (4)

us soluble (in integers x;) then it has a solution in which its left member does not exceed a bound B( f, m)
which depends only on f and the positive integer m, and satisfies

1z,
B(f,m) < 1 21 a;(my mo(f;-1))% (5)
s
where the notation is that of theorem 2, and (1) above, and the accent indicates that (m,my( f,_,)) is to
be interpreted as m for 1 < 4.

Proof. The proof'is by induction from n—1 to n. It suffices to consider the case n > 5; the
proof for n > 1 and the inductive steps to n = 2, 3, 4 are similar but simpler. Consider the
congruence, say

f;z—l(xl’ "'an—l) +bixl+ _I_b;l—lxn—l = Nhannt%“bntn (modm), (6)

which is derived from (4) by giving a suitably chosen value ¢, to x,. Note also that we may
suppose without loss of generality

N:f(yl’ "'7yn) +b1y1—l——|-bnyn

for some integers y; (the values of the x; in the solution of (4) in the hypothesis of the lemma).
Consider also the congruence

j;z—l(xl) "'7xn—1) —I_bixl_l_ —I_b;z—lxn—l = N*annt%““bntn (mOdmO(j;z—l))’ (7)

Clearly (7) is soluble in integers xy,...,x,_; (a solution is x;,...,%,_; =¥, ..., ¥,_q) if
t, = y,+hmy(f,_,), for any integer 4. By theorem 2, (6) is also soluble for such a choice of
t,, whence obviously for ¢, = y,+hmy( f,_,) +km (h, k any integers). Thatis, (6) is soluble for
every ¢, congruent to y, modulo the greatest common divisor (m,my(f,_,)) of m,my(f,_,).

Th ists such a ¢, with
ere exists such a f, w |t,+0,/2a,,| < F(m,my(f,_1))s
whence Ay t;%‘i‘ bn tn < ann(tn +bn/2ann)2 < %ann (m’ mO(j;z—l))z‘

Now the existence of B( f,m), and the inequality (5), both follow from the inductive hypo-
thesis. (The argument is a little more subtle than it appears, since the 4; depend on ¢,; this
however does not matter since the m, of theorem 2 does not depend on the 4,.)

Lemma 9-2. The bound B( f,m) of lemma 9-1 satisfies
B(f,m) < |d|+|d|[*"+|(minf) 3| Dm? (8)
(for n = 4), where min f denotes the minimum of f, and d = d(f).
Proof. Without loss of generality, we assume
A S -0 S Gy (9)

and ayy .- Ay, < |d|. (10)
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To justify the assumption (10), note that, with any definition of reduction, a reduced form

satisfies such an inequality; also that every form is equivalent to a reduced form, and

B(f,m) is invariant under equivalence. ,
The argument of lemma 9-1 shows that m( f) |m,( f,-,) if n = 5, whence by (2), (3)

m(fi1) < mi(f5) < |d(f5)| <ayy oo a55 for i=6,
and m3( f,) < a}, ... a%; These with (5), (9) give

B(fym) < ayym?+-(ay ... ay)2a55-+ay, ... as55a,,.

Here the last term on the rightis < |d| by (10), except for n < 5, in which case it may be
omitted. Similarly, the second term may be replaced by |d|9". To estimate the first term

notice that (minf)*af;® < a}y @iy’ < ayy ... 4y, < |d],
by (9), (10).

(b) Itisnecessary to transform the general n-ary form (n > 5) into a 5-ary diagonal form
with least possible discriminant. This is done by putting 5 = ... =y, = 0,i1fn > 6, in the
following lemma:

Lemma 9:3. By a substitution x; = L(y,, ..., y,),t =1, ...,n, where the L, are suitably chosen
linear forms, with integral coefficients whose determinant is not zero, f can be taken into a diagonal form
a, Y3+ ... +a,y>, where the a; are positive integers satisfying a; = minf,

Oy ... a; < |d 10, G =1, ., (11)
and y...0; <K |a,d|EDIe+1=D0 g — 2 n. (12)

Proof. By a preliminary integral unimodular transformation we may, as is well known,
suppose that the leading coeflicient a,; of fis equal to its minimum. By another such trans-
formation, affecting «,, ..., x, only and not altering the leading coeflicient, we can take
ay9%y+ ... +ay, %, into a multiple of x,; that is, we may suppose f = a,x3+a;,%,%,+...,
where the terms not written do not involve x;, and a; = minf. The estimate a; < |d|'/",
which is well known and follows at once from (9), (10), is the case : = 1 of (11).

With these preliminaries, f/ goes on putting 2a, x, for x, and then y; —a,,x, for x, into a
form, say f”, which is clearly of the shape a,%2+¢, ¢ = ¢(x,, ..., x,). Now on the one hand,
as f" arises from f by a substitution with determinant 2a,,d(f”) = 4a}d(f); on theother hand
(1) of §8 gives d(f") = a,d(§) or —4a,d(¢), according as nis odd or even. So d(¢) < a,|d(f)].

Now the proofof the lemma can be completed byinduction. (Forthe possibility of diagon-
alizing f the induction is on 7; for the estimates (11), (12), on i.) The estimate just obtained
shows that (12) follows from (11) with n—1,¢,7—1 for =, f, i. And the estimate a; < |d|!/
shows that (12) implies (11).

To avoid breaking the thread of the argument later, we deduce from lemmas 9-2, 9-3:

LemMA 9+4. If n = 5, then there exist linear forms L in 5 variables, each with integral coefficients,

such that the substitution x; = Li(y,, ...,Ys),t = 1,...,n lakes f into a positive, diagonal form

g = a3+ ... +asy3, with
. 55 ay ...a5 < |d[¥9, mi(g) < |d]>9, (13)

B(fsmo(8)) < |d| - |d[pln=riin, (14)
where d = d(f) and the notation 1s that of theorem 2 and lemma 9-1.
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Proof. Theorem 2, with 5, g for n, f, and lemma 9-3 give all the assertions except (14).
Since 9/n < 1 for n > 9, < 5/(n—4) for 5 < n < 8, lemma 9-2 gives (14) if the last term of
(8) can be suitably estimated when m is replaced by my(g). This term is

< |a;3d|”(”‘3)a1 g < al—Sl(n—3)+l+4l(n—4)|d| n=3)+4l(n=4)

by (13), and (12) with ¢ = 5. The exponent of g, is positive, so a; may (by (11) with i = 1)
be replaced by |d|'/"; now (14) follows since

1 4 5 1
—(— 3 +1-+ 4 )+ 1 + +-.
n—3 n

n n—4 n—3 n——4:n—4

(¢) Completion of proof of theorem 1. With the hypothesis of theorem 1 that the congruence
(4) of this section is soluble, (14) shows that there exist integers ¢, ..., #,, N’ such that

Sty ooer b)) +byty+ ... +bt, = N
and my(g) |[IN—N’, max (0, N') < |d|+ |d|3/=Ht1in, v (15)

Now the insoluble equation (1) of theorem 1 goes by the trivial substitution x; - x;+¢; into
an equation of the same shape, say f(x,, ... ) +b;%,+... = N—N’, which is also insoluble.
This in turn goes into an insoluble equation of the shape

g(yl,...,y5)+b'1'y1—|—...+b'5'y5:N——N’, (16)

by the substitution of lemma 9-4.

Now the congruence g(yy,...)+bjy;+... = N— N’ (modm) is by theorem 2 soluble for
every positive integer m, since by (15) itis trivially soluble (with each y; zero) when m = m(g).
That is, the hypotheses of theorem 1 all hold for the equation (16), except that its right
member may not be positive. And since g is diagonal we may appeal to the case of theorem 1
that has already been proved (§7, theorem 3), thatis, use (6) of §1 forn = 5, f = g. This gives

max (0, N—N') < (a, ... a5)'*¢ < |d|5/a=9+1in

using (13) and putting ¢ = (n—4)/5n.

From this estimate and (15), the estimates (3) and (4) of theorem 1 follow at once.

Now assume 7z > 6 and f diagonal. A similar but simpler argument shows that (with
(1) of §2 insoluble, though the corresponding congruence is always soluble)

N<(ay...a5)"+a,...a5(as+ ... +a,).

Putting ¢ = 1/n and supposing as we may that ¢, = maxa;, this gives N < q, ... a;qa,, im-
plying (5) of theorem 1. Thus the proof of theorem 1 is complete.

The arguments could be carried a little further; for example, the constant in (5) of
theorem 1 is independent of n, while the estimate for » > 10 can be replaced, with the

notation of (1), by
N < |d(fo) [+ (maxa,)[d(fo) .

I am indebted to Miss Pitman for permission to use her unpublished work referred
to in §3; also to Professor Davenport for reading an earlier version of this paper, making
many helpful comments, and drawing my attention to Miss Pitman’s work. I discussed the
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problem at the Number Theory Conference at Boulder, Colorado in July 1959. I therefore
take the opportunity of thanking the American Mathematical Society and the Office of
Naval Research for making it possible for me to visit the United States.
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